Unleashing the potential of open-source in the 5G arena
Some visions of 5G and beyond

- 5G and beyond is not only New Radio and verticals
- It is also evolution in computing for wireless networks
 - Central offices becoming data-centers (see CORD / M-CORD projects in USA as an example)
 - High-performance fronthaul networks for distributed computing
 - Fixed network to support advanced radio
 - Centralized compute and storage using
 - More general-purpose equipment (Intel servers)
 - More and more software technologies from cloud-computing (NFV, SDN, MEC, etc.) jointly with radio signal processing
 - Applicable to lesser extent for existing and evolving 4G radio

→ Fusion of Information and Cellular technologies
Controller/Orchestrator Hierarchy likely most control is of Open Source origin

5G and OpenAirInterface - R2Lab Inauguration - 9/11/2016, INRIA Sophia Antipolis
OAI is open-source software for soft radio-access

Today it is feasible to put a fully-compliant 4G eNodeB and EPC in a commodity x86 or ARM-based computer (or data center for a pool of eNodeBs)

– Emergence of “radio”-hackers in addition to commercial vendors
– OAI Alliance
 • launched in 2014 as a “Fond de dotation”
 • 3GPP strategic members in 2016 (Orange, TCL-Alcatel, Ercom)

Coupling this with an open-source community makes for a very disruptive technology for the onset of 5G

– What we’re building
 • Community of individual developers, academics and major industrials embracing open-source for 5G
– What we hope to become
 • A strong voice and maybe a game-changer in the 3GPP world

Real impact from “the little guys” on 3GPP systems
Bringing open-source into the RAN

Challenges for 4.5G/5G
- FRAND License for open-source
 - Allow 3GPP members to contribute to open-source and still perceive royalties
 - Compatible with
 - academic/research/prototyping use
 - commercial use in devices, data centers and testing equipment
 - Approval by Nokia, Orange, TCL and Ericsson (observer)
- Community coexistence/synergy with standardization process
 - Use of open-source in prototyping phase of 5G
 - Open-source community following 3GPP process
 - Community representation in 3GPP via OSA
ITU-Vision for Open-source and 5G

2016: Collaboration with Open Source initiatives

- Containers
- Docker
- Kubernetes
- OPNFV
- Open-O
- O3 Project
- OpenStack
- OpenLTE
- OpenAirInterface.org
- TransportSDN (Englewood)
- OpenDaylight
- ONOS
- Android
- Linux
- Fabric as a Service (FaaS)
- Open CCN

NGFI (IEEE 1914) – Fronthaul Vision

Main target of OAI Playground @ Campus SophiaTech
OpenAirInterface Software Alliance Project 4

- **Short-term goal:** “Manual” for up to 50 RRUs and BBU pool
 - align with ITU/NGFI/3GPP architectures for fixed network and data center RAN/CORE

- **Replication of this test network globally to carry out PoCs / Research in the following areas:**
 - Network Slicing
 - Study split of PHY – Data Center / RRU (IEEE/NGMN specs + guidelines)
 - Interface with commercial RRHs over CPRI
 - Orchestration of BBU pool in Intel/ARM based cluster using automated virtualization tools
 - Address real-time, HW abstraction issues when running future RAN in containers and KVM.
 - Work closely with other open source initiatives (OSM, JuJu, OpenStack, OPNFV and ONOS)
 - make it replicable (open-access to technology) and based on current OAI RAN and EPC
 - Interoperable with
 - COTS UEs
 - Commercial EPC
 - Evolve towards 5G as 3GPP progresses (below 6 GHz access)
 - Generic cloud computing equipment and new architecture (XEON + FPGA)
 - 100% open-source

Reference Platform for 3GPP/IEEE/ETSI/NGMN Based on Open Source tools (OAI + others) + Proprietary HW/SW IP Blocks
EURECOM RRH to Datacenter Architecture

Main CLOUD (Legacy Services)
- EPC + ClearWater IMS, FreePCRF (OpenStack + JuJu)

LOCAL CLOUD (Low-latency Services)
- eNB

Some aspects
- Distributed computation
- Cheap synchronization
- Real-time signals over Ethernet (copper, low-cost fiber)

20 GbE (switched)
10 GbE (IF4p5)
1GbE (IF4p5)

EPC, GTPu, S1AP

Small-cell RRU L1L

Atomic Clock

CPRI GW

macro-cell RRU L1L

Small-cell RRU L1L

Small-cell RRU L1L

10GbE (switched)
OAI Playground Equipment

- Deployment of OAI playground on SophiaTech Campus
 - 50 Low cost RRU (Intel Atom E3845 or X7-8300, <10W TDP)
 - Dense servers x86-64 Xeon (today)
 - Optical (10/20/100 GbE) and copper (1 GbE) distribution

RCC/RAU (COTS Intel Server Technology)
Targeted Indoor/Outdoor deployment (SophiaTech Campus)

ITU-T Radio Clouds
Concluding Message

We want people to take this, experiment and enrich in a community-driven effort

- Contribute to the software
- Replicate the hardware
- Integrate with other hardware
- Push to standards bodies (e.g. ITU, ETSI, 3GPP) and upstream in other communities (e.g. OPNFV)
- Use for PoC demonstrators (5GPPP and other project programs)